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ABSTRACT 

Several years ago a promising approach for processing 

InSAR time series was introduced under the name 

SqueeSAR [1]. The successful application of this 

framework poses some delicate questions.  This paper 

focuses on the problem that real data do rarely behave 

perfectly Gaussian. An augmentation of the stochastic 

model underlying the phase linking step is presented 

and the applicability under the assumption of complex 

elliptically symmetric distribution is discussed. Results 

from tests with two time series of TerraSAR-X HRS 

data are presented and preliminary conclusions drawn. 

 

1. INTRODUCTION 

At Fringe 2009 Fabrizio Novali introduced SqueeSAR, 

a refined approach to deformation analysis developed 

by Ferretti, Fumagalli, Novali himself, Prati, Rocca and 

Rucci [2]. The presented comparisons of results 

generated with SqueeSAR to such generated with 

PSInSAR exhibited an impressive increase of extracted 

information. This success is based on a unified spatio-

temporal statistical analysis which can be seen to turn 

DS (distributed scatterers) into PS. Means of this 

conversion is a maximum likelihood estimator, derived 

and theoretically investigated by Monti Guarnieri and 

Tebaldini [3], that provides the complex signal common 

to a group of DS pixels obeying a joint circular complex 

normal distribution. In the framework of SqueeSAR [1], 

this estimator is made applicable by providing ideas for 

grouping DS candidate pixels in a neighbourhood of an 

investigated pixel, which is supposed to be statistically 

homogeneous and to allow for the estimation of the 

covariance matrix. 

Despite the demonstrated capability of this approach to 

enhance coverage with high quality information 

considerably and although the use of related ideas in the 

SAR interferometry community increased in the last 

years, questions which arise naturally when one tries to 

put to work this approach are still not answered 

satisfyingly. These questions concern criteria for 

grouping pixels, estimators for the covariance matrix 

and the use of characteristic numbers, which allow 

recognizing low quality pixels and cutting short time 

consuming computations for them. Moreover good DS 

pixels have to be identified in order to be able to decide 

if they can be included in the start set of pixels on which 

an initial estimation is performed. This is of particular 

interest for rural scenes to bridge gaps in the PS net. 

 

Because a deeper investigation is required the focus in 

this work is on the estimation of the covariance matrix 

for phase linking. In order to better understand how this 

should be done an extended stochastic model is stated 

accounting for different scale of backscattering among 

the grouped pixels, contamination by outliers and 

residual fringes. Furthermore the applicability of phase 

linking to some relevant classes of complex elliptically 

distributions other than the multivariate Gaussian is 

discussed. Preliminary results with several estimators 

for the covariance matrix and different parameter 

settings are shown. 

For the purpose of exploring the effect of the different 

choices of estimator we implemented a testing 

environment. DS are processed in a detail of the 

investigated scene and then connected to a reference 

result of a PS analysis. Pixels are assessed according to 

the temporal coherence of their phase differences to 

nearby PS and versus ground truth. Test data are from a 

scene in Bavaria, where a LIDAR DEM is available and 

from the town of Lüneburg, Germany, where we use 

deformation series from levelling as ground truth. Both 

stacks are TerraSAR-X high resolution spotlight-mode 

(300MHz). 

Before presenting our work I want to point out to the 

reader that the estimation of covariance respectively 

coherence matrices for InSAR time series analysis has 

been studied before [4], [5], [6], [7]. To our best 

knowledge the work of Francesco De Zan [4] (and 

therewith that of its PhD advisor Fabio Rocca) is the 

origin of the use of the covariance matrix in InSAR time 

series analysis. In order to extract the information of 

interest maximum likelihood estimation under Gaussian 

assumption for a low order parametric model of phase is 

applied. This is also the approach used in [5], [6], [7]. 

Our work is in part a study of the same estimators. What 

is different is that the usage for phase linking is clarified 

by giving an augmented stochastic model. 

 

2. AUGMENTED STOCHASTIC MODEL 

In order to clarify how phase linking can be used for 

data that are not well modelled by the Gaussian 

probability distribution, we suggest considering the 

following extended stochastic model for a DS. Given a 

neighbourhood Ω of pixels we assume that the complex 

vectors of image values are realisations of random 

vectors 𝜁𝑘 that result by some modifications from 

independent identically circular complex normal 
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distributed random vectors 𝑧𝑘~𝐶𝑁(0, 𝐶, 0) (k ∈Ω). 𝐶 

denotes the covariance matrix and we make the 

assumption that for its entries 𝑐𝑛𝑚 ∈ ℝ≥0 holds. The 

reason for this assumption will become clear later. (For 

the sake of simple notation we do not distinguish 

between the random vectors and their realisations in the 

following.) We allow for modification by scaling each 

pixel by a factor 𝑠𝑘 ∈ ℝ>0, by residual fringes 𝜓𝑘𝑛 ∈ ℝ 

and outliers 𝑜𝑘𝑛 ∈ ℂ. Thereby the images are 

enumerated by 𝑛 = 1, ⋯ , 𝑁. The scaling factor accounts 

for varying backscatter from pixel to pixel. The residual 

fringes are thought to stem e.g. from a gradient in the 

deformation field, from uncompensated topography or 

small scale variations of atmospheric delay. We have to 

assume that they behave spatially smooth and that they 

can be filtered out by appropriate methods. The 𝑜𝑘𝑛 

model outliers e.g. caused by presence of objects only in 

a few of the pixels and only some of the acquisitions 

and therefore are assumed to be zero for the larger part 

of 𝑘 and 𝑛. As in the original model used by [3] all 

pixels in Ω are assumed to have a common phase 

history 𝜙𝑛 that accounts for deformation, atmospheric 

delay, large area DEM errors and other contributions 

that do not vary spatially. The 𝜙𝑛 are the sought for 

unknowns during phase linking. For pixel k at time 𝑛 

we have 

𝜁𝑘𝑛 = (𝑠𝑘 ∙ 𝑧𝑘𝑛 + 𝑜𝑘𝑛) ∙ 𝑒𝑖∙(𝜓𝑘𝑛+𝜙𝑛)   (1)  

From this we can proceed in analogy to [3]. First we 

state the likelihood function  

𝑝(𝜁|𝜙) = 𝑐 ∙ 𝑒𝑥𝑝(−𝜁𝐻 ∙ 𝐶(𝜙, 𝑠, 𝜓)−1 ∙ 𝜁)       (2)  

for the vector 𝜙 of phases 𝜙𝑛. 𝑐 is a constant 

independent of 𝜙. 𝜁 equals 𝜁 − 𝜇(𝜙,  𝑜, 𝜓), where 𝜁 is 

the random vector composed of the vectors 𝜁𝑘, k=

1, ⋯ , 𝐾,  𝜇(𝜙,  𝑜, 𝜓) = 𝐸[𝜁] is its expectation vector, 

which depends on 𝜙, on the vector 𝑜 of all outliers 𝑜𝑘𝑛 

and the vector 𝜓 of all fringes 𝜓𝑘𝑛 and 𝐶(𝜙, 𝑠, 𝜓) is the 

covariance matrix of 𝜁, which depends on  𝜙, the vector 

𝑠 of all scaling factors 𝑠𝑘 and 𝜓. After some 

transformations we obtain 

𝜁𝐻 ∙ 𝐶(𝜙, 𝑠, 𝜓)−1 ∙ 𝜁 = 𝜉𝐻 ∙ (|𝐶|−1 ∘ 𝐼𝛺) ∙ 𝜉       (3)  

𝜉 is the vector with entries 𝜉𝑛 = 𝑒𝑖𝜙𝑛 , 𝑛 = 1, ⋯ , 𝑁 and 

𝐼𝛺 is the matrix with entries 

𝑖𝑛𝑚 = ∑ 𝑠𝑘
−2 ∙ (𝑒−𝑖∙𝜓𝑘𝑛 ∙ 𝜁𝑛) ∙ (𝑒−𝑖∙𝜓𝑘𝑛 ∙ 𝜁𝑚)

𝐻
𝑘∈𝛺     (4)

  

Now we see that the assumption 𝑐𝑛𝑚 ∈ ℝ≥0 stated 

before is equivalent to assuming that the phase common 

to all pixels in Ω is completely described by 𝜙. This 

augmented stochastic model provides us with the 

insight, how phase linking has to be applied when scale 

of backscatter is varying, residual fringes are present 

and a limited number of outliers contaminate otherwise 

Gaussian distributed data: We estimate for every pixel 

in Ω the scale of backscatter and normalize amplitudes 

accordingly. Furthermore we remove the residual 

fringes by some filtering procedure. Then a robust 

estimator for covariance matrices is applied. The result 

𝐶̂ is an estimation of  #Ω ∙ 𝐼𝛺 or 𝐶(𝜙, 0,0) respectively. 

That is the task of phase linking can be solved by 

minimizing 

𝑓(𝜙) = 𝜉𝐻 ∙ (|𝐶̂|
−1

∘ 𝐶̂) ∙ 𝜉                                           (5)  

3. PHASE LINKING FOR CES DISTRIBUTIONS 

Another possibility to extend the range of applicability 

of phase linking is to start with complex elliptically 

symmetric (CES) distributed random vectors 

𝑧𝑘~𝐶𝐸(0, Σ, 𝑔)  (k ∈Ω). Σ is called scatter matrix and 

is equal to the covariance matrix up to a positive real 

constant. 𝑔 is called density generator and has to obey 

some integrability condition [8]. CES distributions form 

a larger class that comprises e.g. complex normal, 

complex t-, complex K-, generalized Gaussian and 

inverse Gaussian distributions and are used to model 

radar clutter. More information on CES distributions 

and their properties can be found in [8]. For CES 

distributions the likelihood function for phase linking is 

given by 

𝑝(𝜁|𝜙) = 𝑐 ∙ 𝑔(𝜁𝐻 ∙ Σ(𝜙, 𝑠, 𝜓)−1 ∙ 𝜁)   (6) 

In case 𝑔 is strictly monotonically decreasing we can 

proceed as in the case of complex circular normal 

distributions as the factor between scatter matrix and 

covariance matrix has no effect on the position of the 

minimum (cp. Eq. 3). Complex normal, complex t-, 

complex K-, complex generalized Gaussian and 

complex inverse Gaussian distributions are examples 

where 𝑔 is strictly monotonically decreasing. Maximum 

likelihood estimators for the scatter matrices of CES 

distributions fulfil a certain implicit equation in case 𝑔 

is real continuously differentiable. For the distributions 

named above this equation can be solved uniquely by 

iteration (cp. [8], Theorems 6 and 7) and constitute so 

called M-estimators. 

 

4. M-ESTIMATORS OF SCATTER  

(As for Section 3 the main source for this section has 

been [8].) For each of the above CES distributions there 

exists a weight function 𝜑 such that the maximum 

likelihood estimator of scatter 𝛴̂ is the solution of the 

following equation 

𝛴̂ =
1

#𝛺
∑ 𝜑(𝜁𝑘

𝐻𝛴̂−1𝜁𝑘) ∙ 𝜁𝑘𝜁𝑘
𝐻

𝑘∈𝛺                                 (7)  



 

Examples are 𝜑 ≡ 1 in the case of normal distributions 

or 𝜑𝑀𝐿𝑇(𝑡) =
2𝑁+𝜈

2𝑡+𝜈
 in the case of the complex 𝑁-

dimensional t-distribution with parameter 𝜈 ∈ ℝ>0. 

More generally Eq. 7 defines for appropriate 𝜑 an M-

estimator of scatter (MES). An important property of an 

estimator is its robustness in the sense that its influence 

function is continuous and bounded. The boundedness 

implies that small deviations from the assumed 

probability distribution function do not cause arbitrary 

large estimation errors. If the influence function exists 

MES are robust iff the function 𝜓(𝑡) = t ∙ 𝜑(𝑡) is 

continuous and bounded (cp. Theorem 8 in [8]). 

Furthermore the influence function exists if the function  

 

Figure 1. Pixels chosen for tests at Greding 

given by t ∙ 𝜓′(𝑡) is bounded. 

From the named CES distributions only the t-

distribution has a robust maximum likelihood estimator 

of scatter. As nonrobust estimators may severely fail if 

the distribution of the data deviates from the assumed 

distribution it is recommendable to look for robust 

alternatives. Robust estimators studied in this work are 

besides the 𝑀𝐿𝑇 the Huber-MES (𝐻𝑢𝑏𝑒𝑟) with 

parameter 𝑞 given by  

𝜑𝐻𝑢𝑏𝑒𝑟(𝑡) = {

1

𝑏(𝑞)
, 𝑡 ≤ 𝑐(𝑞)2

𝑐(𝑞)2

𝑡∙𝑏(𝑞)
, 𝑡 > 𝑐(𝑞)2

                                (8)  

and the S-estimator (𝑆𝑅) with Rocke’s weight function 

(cp. [9]) 

𝜑𝑆𝑅(𝑡) = {
3

4𝛾
(1 − (

𝑡−1

𝛾
)

2

) , 1 − 𝛾 ≤ 𝑡 ≤ 1 + 𝛾

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
     (9)  

For 𝐻𝑢𝑏𝑒𝑟(𝑞) we determine 𝑐(𝑞) =
1

2
(𝜒2𝑁

2 )−1(𝑞) and 

b(𝑞) = 𝜒2(𝑁+1)
2 (2𝑐(𝑞)2) + 2𝑐(𝑞)2 1−𝑞

𝑁
, where 𝜒𝑚

2  is the 

𝜒2-distribution with 𝑚 degrees of freedom. 

5. DATA 

5.1. Greding (Bavaria)  

This stack comprises 23 TerraSAR-X HRS (300 MHz) 

acquisitions. As ground truth a LIDAR-DTM of the 

Bavarian land surveying office (height accuracy better 

than 0.2 m, positional accuracy better than 0.5 m) was at 

our disposition. The DTM was transformed to the 

master raster. For tests we chose 250 pixels from a flat 

area where regions with different backscattering 

properties can be found (asphalt, plaster, concrete, 

meadow). Figure 1 shows the chosen pixels in front of a 

mean amplitude image. Their colour displays their 

phase triangulation coherence. 

 

Figure 2. Pixels chosen for tests at Lüneburg 

5.2. Lüneburg 

As a second test case we used 26 TerraSAR-X HRS 

(300 MHz) acquisitions from the town of Lüneburg. 

The construction office of the town provided levelling 

data from which we extracted 199 measurement points 

that were useable for our purpose (cover of the period of 

interest, linear deformation). LOS velocities were 

computed and positions transformed to positions in the 

master raster. The deformation field was interpolated 

using natural neighbour interpolation. For the tests we 

restricted ourselves to an area of strong subsidence 

(Ochtmisser Kirchsteig), where ground truth was 

recorded every one or two months and also horizontal 

movements occurred. Because the interpolated 

deformation field apparently deviated considerably from 

the actual movement where measurement points of 

moderate velocity were interpolated with ones of zero 

velocity at a larger distance, we originally intended to 

use only the measurement points themselves for 

comparison with estimations. Unfortunately a mistake 

in the list of pixel coordinates elapsed our attention and   



 

Figure 3. Testing results for Greding

we performed tests for the pixels depicted in Figure 2. 

Pixel colours correspond to LOS velocity according to 

interpolated ground truth. The background image is the 

mean amplitude image over the stack.  

6. TESTS 

6.1. Testing environment for DS-processing 

Put into one sentence DS-processing can be described as 

spatio-temporal filtering that turns DS into PS. DS-

processing runs through several steps. First the 

neighbourhood Ω of the pixel under consideration 

(called DS-candidate (DSC) in the following) has to be 

determined. Inside a search window centred on the 

considered pixel all other pixels are checked for 

similarity according to some criterion. In our 

implementation this is done by either the Kolmogorov-

Smirnov (KS) or the Anderson-Darling (AD) two-

sample test. A pixel is accepted as neighbour if the 

hypotheses that both pixels stem from the same 

distribution is not rejected given the chosen significance 

level. The second step is phase linking as described in 

Sections 2.-4. after which the phase of the DSC pixel is 

replaced by the estimated phase.  

For testing we use a reference PS-analysis. The 

atmospheric phase screen estimated for the PS is 

extended to the position of the DSC and removed from 

its phase. Then the nearest PS in the vicinity of the DSC 

is selected and the difference phase is evaluated. The 

estimated linear deformation trend or DEM error is 

compared to the ground truth described in Section 5. 

Because of the large number of test settings we 

restricted our investigation on the selections of pixels 

described in Section 5. As criterion of quality we 

counted the number of “good” pixels, where goodness is 

defined in Subsection 6.3. and 6.4. respectively.  

6.2. Test settings 

In our tests we investigated four estimators of scatter: 

the sample covariance matrix, which is the maximum 

likelihood estimator under assumption of the Gaussian 

distribution, 𝑀𝐿𝑇, 𝐻𝑢𝑏𝑒𝑟 and 𝑆𝑅. For each of them 

different parameter settings for the weight function, 

different significance levels, different sizes of search 

window and nonscaled as well as scaled amplitudes 

were studied. The tested significance levels correspond 

to those effective for the KS test. When writing this 

paper, results were not available for all possible 

combinations. Furthermore not all results that are 

available are shown. 

6.3. Testing results for Greding 

Figure 3. shows the results for Greding. Colour gives 

the number of good pixels, where high number is 

attained for red. The depicted blocks correspond each to 



 

 

Figure 4. Testing results for Lüneburg with 𝑀𝐿𝑇 and 𝐻𝑢𝑏𝑒𝑟 

 

Figure 5. Testing results for Lüneburg with 𝑆𝑅 

 

a choice of estimator and a choice between scaling 

amplitudes or not scaling amplitudes. The sample 

covariance matrix is abbreviated either as 𝑆𝑎𝐶𝑀 or as 

𝑆𝑖𝐶𝑀. The latter is used because for scaled amplitudes 

we obtain the so called sign covariance matrix. DSC 

pixels are considered “good” if the temporal coherence 



 

𝛾 of the arc connecting it to the nearest PS is ≥ 0.7 and 

the deviation from ground truth is less than 1𝑚. Best 

results regarding “goodness” and insensitivity towards 

choice of significance level and choice of window size 

are achieved for the robust estimators 𝑀𝐿𝑇(4), 𝑀𝐿𝑇(5) 

and 𝐻𝑢𝑏𝑒𝑟(0.2) with nonscaled amplitudes. Results for 

𝑀𝐿𝑇 with scaled amplitudes were not available for 

Greding yet. 𝑆𝑅 with scaled amplitudes gives similar 

results as 𝐻𝑢𝑏𝑒𝑟 with scaled amplitudes. With 

nonscaled amplitudes 𝑆𝑅 fails completely. This is 

related to the fact that 𝑆𝑅 is, other than 𝑀𝐿𝑇 and 

𝐻𝑢𝑏𝑒𝑟, very sensitive to the matrix used as a starting 

point for iterations when solving Equation 7. According 

to [9] 𝑆𝑅 performs superior to all other estimators 

investigated by them. Unfortunately this aspirable 

performance is based on the usage of a starting matrix 

found by a procedure that forbids itself in our situation 

because of a high computing time. 

6.4. Testing results for Lüneburg 

Results for Lüneburg are given in Figures 4. and 5. 

Being a “good” DSC pixel is now defined as having 

temporal coherence 𝛾 ≥ 0.7 for the arc connecting it to 

the nearest PS and having deviation from ground truth 

either less than 0.002𝑚/𝑦 or less than 10%. They are 

arranged in the same way as those for Greding only that 

tests with nonscaled amplitudes are displayed in the 

upper row and tests with scaled amplitudes in the lower 

row. It is obvious that scaled amplitudes give 

significantly better results than nonscaled amplitudes. 

Best results are achieved with 𝐻𝑢𝑏𝑒𝑟(1.0𝑒 − 005) 

and 𝐻𝑢𝑏𝑒𝑟(1.0𝑒 − 008)  with scaled amplitudes. We 

also tested the sample covariance matrix but again the 

robust estimators gave better results. 

 

7. DISCUSSION AND SUMMARY 

We presented an augmented stochastic model that 

clarifies how phase linking can be applied when the 

distribution of data deviates from the assumption of 

Gaussian distribution. Furthermore phase linking for 

complex elliptically symmetric distributions was 

discussed. 

Testing results are yet incomplete and should be 

considered preliminary. Nevertheless they strongly 

indicate that scaling is more advantageous than not 

scaling, as the results for the stack of Lüneburg showed 

distinct improvements while for Greding 𝑀𝐿𝑇 and 

𝐻𝑢𝑏𝑒𝑟(1.0𝑒 − 005) for scaled amplitudes, which gave 

the best results for Lüneburg, have not been evaluated 

yet. For both data stacks robust estimators 𝑀𝐿𝑇(𝜈) and 

𝐻𝑢𝑏𝑒𝑟(𝑞) outperform the sample coherence matrix 

when suitably parameterized. As tests not presented 

here demonstrated that already a first order fringe 

correction as introduced in [10] improves results when a 

strong gradient of the deformation field is present, our 

proposed approach has already proven useful in all three 

aspects that were integrated in our augmented model. 
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