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ABSTRACT 

This paper presents a step towards a better interpretation 

of the scattering mechanism of different objects and 

their deformation histories in SAR interferometry 

(InSAR). The proposed technique traces individual SAR 

scatterer in high resolution optical images where their 

geometries, materials, and other properties can be better 

analyzed and classified. And hence scatterers of a same 

object can be analyzed in group, which brings us to a 

new level of InSAR deformation monitoring. 

1. INTRODUCTION 

Large area deformation monitoring is so far only 

achievable through SAR interferometry (InSAR) 

techniques such as persistent scatterer interferometry 

(PSI) and SAR tomography (TomoSAR). Through 

modelling the interferometric phase of the scatterers, we 

are able to reconstruct their 3-D positions and the 

deformation histories. However, the current SAR theory 

makes a quite restrictive assumption – linearity – in the 

imaging model, for the convenience of mathematical 

derivation. That is to say the imaged area is considered 

as an ensemble of individual point scatterers whose 

scattered fields and, hence, their responses in the SAR 

image superimpose linearly [1]. In the reality, the true 

position and the exact scattering mechanism of the 

scatterer still require further study.  

This work presents a step towards a better 

understanding of the scattering mechanism of different 

objects. We back trace individual SAR scatterer in high 

resolution optical images where we can analyze the 

semantics and other properties of the imaged object. 

This work is towards a future generation of InSAR 

techniques that are contextually aware of the semantics 

in a SAR image, which enables the object-level 

deformation reconstruction and analysis from SAR 

images, instead of the current pixel-based reconstruction 

without the understanding of the manmade world that is 

imaged. The proposed approach brings the first such 

analysis via a semantic classification in the InSAR point 

cloud. 

The general framework of the proposed approach is 

shown in Figure 1. The semantic classification of the 

InSAR point cloud is achieved by co-registering the 

InSAR point cloud and an optical image to a common 

reference 3-D model, so that the semantic classification 

in the optical image can be transfer to the InSAR point 

cloud. The general procedures are as follows. 

a. Retrieve the 3-D positions of the scatterers from 

SAR image stacks. Since urban area is of our main 

interest, tomographic SAR inversion should be 

employed in order to resolve a substantial amount 

of layovered scatterers. 

b. Absolute georeference the 3-D InSAR point cloud, 

due to the relative position of the InSAR point 

cloud w.r.t. a reference point. This step is achieved 

by co-registering the InSAR point cloud with a 

reference 3-D model. 

c. Texturing the reference 3-D model with high 

resolution optical images, so that each SAR 

scatterer can be traced in the optical image.  

d. Classify the optical image pixels based on its 

semantic meaning, e.g. geometry, material, and so 

on. 

e. Perform further analysis on object-level in the 

InSAR point cloud based on their semantic class. 

 

 
Figure 1. Flowchart of the proposed method. The semantic 

classification of the InSAR point cloud is achieved by co-

registering the InSAR point cloud and the optical image to 

a reference model. 

2. TOMOGRAPHIC SAR INVERSION 

The SAR tomography (TomoSAR) processing aims at 

separating multiple scatterers possibly layovered in the 

same pixel, and retrieving their third coordinate 

elevation in the SAR native coordinate system. 

Displacement of the scatterers can also be modeled and 

estimated, using stack of images acquired at different 

times. This is commonly known as differential SAR 

tomography (D-TomoSAR) [2]–[4]. 
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We make use of the D-TomoSAR software Tomo-

GENESIS [5], [6] developed in DLR to process 

TerraSAR-X image stacks. For an input data stack, 

Tomo-GENESIS retrieves the following information:  

 the number of scatterers inside each pixel, 

 the scattering amplitude and phase of each 

scatterer, 

 and their 3D positions and motion parameters, e.g. 

linear deformation rate and amplitude of seasonal 

motion. 

The scatterers’ 3D positions in SAR coordinates can be 

converted into a local Cartesian coordinate system, such 

as Universal Transverse Mercator (UTM), so that the 

results from multiple data stacks with different viewing 

angles can be combined. For our test area Berlin, two 

image stacks – one ascending orbit, the other 

descending orbit – are processed. These two point 

clouds are fused to a single one, using a feature-based 

matching algorithm which estimates and matches 

common building edges in the two point clouds [7]. The 

following figure is the fused point cloud which provides 

a complete monitoring over the whole city of Berlin. 

 
Figure 2. The fused TomoSAR point cloud of Berlin, which 

combines the result from an ascending stack and a 

descending stack. The height is color-coded. 

3. COREGISTRATION OF TOMOSAR POINT 

CLOUDS AND THE REFERENCE MODEL 

3.1. CO-REGISTRATION WORKFLOW 

Our reference model is a 3D point cloud from an 

airborne LiDAR sensor [8], which is represented, same 

as the TomoSAR point cloud, in the UTM coordinate 

system. And hence, the co-registration problem is the 

estimation of translation between two rigid point clouds, 

subject to a certain tolerance on rotation and scaling. 

However, our LiDAR point cloud is nadir-looking, in 

contrast to the side-looking geometry of SAR. In 

another word, façade point barely appears in LiDAR 

point cloud while it is prominent in TomoSAR point 

cloud. This difference is exemplified in Figure 3, where 

the left and the right subfigures correspond to the 

TomoSAR and LiDAR point clouds of the same area. 

These unique modalities have driven our algorithm 

developed in the following way: 

1 Edge extraction 

a. The LiDAR point cloud is rasterized into a 2D 

height image. 

b. The point density of TomoSAR point cloud is 

estimated on the rasterized 2D grid. 

c. The edges in the LiDAR height image and the 

TomoSAR point density image are detected. 

2 Initial alignment 

a. Horizontally by cross-correlating the two edge 

images. 

b. Vertically by cross-correlating the height 

histogram of the two point clouds. 

3 Refined solution 

a. The façade points in both point clouds are 

removed. 

b. The final solution is obtained using iterative 

closest point (ICP) applied on the two reduced 

point clouds. 

 
(a) 

 
(b) 

Figure 3. (a) TomoSAR point cloud of high-rise buildings, 

and (b) the LiDAR point cloud of the same area. Building 

façades are almost invisible in the LiDAR point cloud, 

while it is prominent in the TomoSAR point cloud. 

3.2. 2-D EDGE EXTRACTION 

In order to obtain the height image and the point density 

image of LiDAR and TomoSAR point clouds 

respectively, the two point clouds are tiled according to 

a 2D grid. Here we use 2×2 m for our dataset. For the 

LiDAR point cloud, the mean height in each grid cell is 

computed, while for the TomoSAR point cloud, the 

number of points inside the grid cell is counted. The 

edges can be extracted from these two images using any 

edge detector, such as Sobel filter [9]. The thresholds in 

the edge detector are decided adaptively, so that the 
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numbers of edge pixels in the two edge images are on 

the same scale. The following figure is a close up view 

of the two edge images near downtown Berlin. 

 
(a) 

 
(b) 

Figure 4. (a) A part of the edge image of the reference 

LiDAR point cloud in downtown Berlin, and (b) the edge 

image of the TomoSAR point cloud roughly at the same 

area. 

3.3. INITIAL ALIGNMENT 

The initial alignment provides an initial solution to the 

iterative closest point (ICP) algorithm which is known 

to suffer from finding possibly a local minimum. The 

initial alignment consists of independently finding the 

horizontal and the vertical shifts. The horizontal shift is 

found by cross-correlating the edge images of the two 

point clouds. In most of the cases, a unique peak can be 

found, due to the complex, hence pseudorandom, 

structures of a city. Please see Figure 5 for the 2D 

correlation of two edge images, where a single 

prominent peak is found. The vertical shift is found by 

cross-correlating the height histogram of the two point 

clouds, which is shown in Figure 6. We also set the bin 

spacing of the height histograms to be 2m in our 

experiment. The accuracy of the shift estimates are of 

course limited by the discretization in the three 

directions. However, this is sufficient for the final 

estimation. 

 

Figure 5. 2D cross-correlation of the edge images of 

TomoSAR and LiDAR point clouds. A single peak is found 

at (828, -784) m.  
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(c) 

Figure 6. (a) The height histogram of TomoSAR point 

cloud, (b) the height histogram of LiDAR point cloud, and 

(c) the correlation of (a) and (b), where the red cross 

marks the peak position which is at -6 m. 

3.4. FINAL SOLUTION 

The final solution is obtained using a normal ICP 

algorithm based on the initial solution calculated from 

the previous step. The façade points in the TomoSAR 

point clouds are removed to prevent ICP from finding a 

wrong solution. The following image demonstrates the 

co-registered point cloud. Successful co-registration can 

be confirmed by seeing the correct location of the 

façade points in Figure 7(b). 



 

 
(a) 

 
(b) 

Figure 7. (a) Close up of the reference LiDAR point cloud 

in downtown Berlin, and (b) the co-registered point cloud 

combining the TomoSAR and LiDAR point cloud. 

4. COREGISTRATION OF OPTICAL 

IMAGE AND REFERENCE MODEL 

Currently, we rely on the fact that the optical image is 

already well co-registered with the reference point 

cloud, i.e. the camera extrinsic parameters are well 

known in the coordinate system of the reference point 

cloud. In our current experiment, the camera position is 

known up to an accuracy of 20cm with respect to the 

LiDAR point cloud. However, the users are not 

restricted to LiDAR point cloud. One can also use a pair 

of stereo optical images and the reconstructed 3-D point 

cloud. 

 
Figure 8. TomoSAR point cloud textured with the RGB 

color from optical image, where the dark background is 

the optical image not covered by the point cloud. 

Figure 8 is the TomoSAR point cloud textured with 

RGB color from the optical image, where the subfigure 

(b) is the close up of the area in the dashed red rectangle 

in (a). Such textured point cloud enables the analysis of 

the SAR point cloud based on the features in optical 

image. Currently, we are developing algorithms for co-

registering oblique optical images with 3D model, 

which will brings more optical information of façade 

points. 

5.  SEMANTIC CLASSIFICATION IN 

OPTICAL IMAGE 

The semantic classification is done patch-wised using a 

dictionary-based algorithm. The entire optical image is tiled 

into small patches, e.g. 50×50 pixels. They are then described 

using a dictionary, to be specific, the occurrence of the atoms 

in the dictionary. Such model is known as the Bag of Words 

(BoW) [10]. The final patch classification is achieved using 

support vector machine (SVM). The detailed workflow is as 

follows. 

5.1. BOW MODEL 

BoW originates from text classification, where a text is 

modeled as the occurrence of the words in a dictionary, 

disregarding the grammar as well as the order. This is also 

recently employed in computer vision, especially in image 

classification. Analogous to text, the BoW descriptor w of an 

image Y is modeled as the occurrence of the “visual” words in 

a predefined dictionary D, i.e.: 

   h 
D

w Y   (1) 

where  h  is the histogram operator, and    is the 

transformation function from the image space to the feature 

space. Hence the visual words refer to the representative 

features in the image, whose ensemble constructs the 

dictionary. 

5.2. FEATURE EXTRACTION 

We calculate the dense local features of each patch, i.e. 

the feature is computed in a sliding window through the 

patch. This is described in Figure 9(a) where the red 

window traverses the patch, and computes one local 

feature vector at each position. The subfigure (b) is 

examples of some other patches extracted from the 

image. 

Several commonly used features have been tested, 

which includes the most popular scale-invariant feature 

transform (SIFT) suggested by many literatures. 

However, the feature in our experiment is simply the 

vectorized the RGB pixel values in a 3×3 sliding 

window. Experiment shows its constant robustness and 

efficiency for large area processing. 

        

         (a)                                               (b) 

... 



 

Figure 9. (a) demonstration of dense local feature 

computed on an image patch, where the feature is 

computed in the red sliding window through the patch, 

and (b) some examples of other image patches. 

5.3. DICTIONARY LEARNING 

Assume the dictionary is defined as 
N k

D , where N 

is the dimension of the word, i.e. feature vector, and k is 

the number of feature vectors, also known as atoms. The 

k feature vector should include representative features 

appear in the whole image, so that each patch can be 

well described. 

Depending on the patch size, certain number of feature 

vectors is obtained from each patch. Collecting all of 

them for all the patches should already give a 

preliminary dictionary. However, the size of such 

dictionary is tremendous, knowing that an aerial optical 

image can be tiled into millions of patches, and each 

patch can give tens to hundreds of feature vectors. This 

renders k in the order of hundreds of million. 

Therefore, the dimension of the preliminary dictionary 

should be reduced. We perform an unsupervised 

clustering, e.g. k-means, on the preliminary dictionary 

in order to quantize the feature space. The cluster center 

is extracted as the final dictionary. Figure 10 exemplify 

the quantization in a 2-D feature space. The colored 

crosses are the features extracted from the whole image. 

5.4. PATCH DESCRIPTOR 

The patches are described following Equation (1). 

Implementation-wise, this is achieved by assigning the 

features of a patch to their nearest neighbours in the 

dictionary. To this end, the patch descriptor is a vector 
k

v . 

 
Figure 10. Demonstration of dictionary learning in two 

dimensional feature space. The colored crosses are the 

features collected from all the patches in the image. A k-

means clustering is performed to get k cluster centers, i.e. 

the dictionary atoms. Image modified from [11]. 

5.5. CLASSIFICATION 

The classification is done using a linear SVM [12] 

implemented in an open source library VLFeat [13]. 

The SVM classifier finds a hyperplane which separates 

two classes of training samples with maximal margin. 

Giving the patch descriptor v, its SVM classification is: 

    T
f sign b v w v   (2) 

where k
w  and b are the parameters of the 

hyperplane, and  sign  is the sign operator which 

outputs ±1. 

For an m-class (m>2) problem, difference SVM should 

be trained for each class against the rest. The final 

classification of a patch v is assigned to the one with the 

largest SVM score, i.e.: 

    max
T

f  v W v b   (3) 

where k m
W  and m

b  are the concatenated 

parameters of m hyperplanes. 

Our test image (5000×5000) is tiled into patches of 

50×50 pixel, with 46 pixel overlap. That is to say, the 

classification of each patch is only assigned to the 4×4 

pixel in the center. Among all the patches, 570 are 

manually selected as training samples. Four classes are 

preliminarily defined: building, roads/rail, river, and 

vegetation. Each of them has 240, 159, 39, and 132 

training patches, respectively. The feature in our 

experiment is simply the vectorized RGB pixel values in 

a 3×3 sliding window, which results in a feature space 

of 27 dimension. Figure 11 shows the classification 

result of a region in the entire image, where the left 

image is the optical image, and in the right image, 

classified building, road, river, and vegetation are 

marked as red, blue, green, and blank. Despite the 

extremely simple feature we used, the four classes are 

very well distinguished.  

  
(a)                                         (b) 

Figure 11. (a) the test optical image, and (b) the 

classification of building, road, river, and vegetation, 

where they are colored in red, blue, green, and blank. 

Since we are particularly interested in building, its 

classification performance is evaluated by classifying 

half of training samples using the SVM trained with the 

other half of the samples. The average precision of the 

current algorithm is 98%. The full precision and recall 

curve is plotted in Figure 12(a). The equivalent receiver 

operating characteristic curve is also shown in Figure 

12(b), for the readers who are more familiar with it. The 

red cross marks our decision threshold which gives a 

detection rate of 90%, and false alarm rate of 3%. 



 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

PR curve

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curve

False alarm rate
D

e
te

c
ti
o
n
 r

a
te

 
0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

PR curve

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ROC curve

False alarm rate

D
e
te

c
ti
o
n
 r

a
te

 
(a)                                            (b) 

Figure 12. (a) precision and recall curve of the building 

classification with an average precision is 98%, and (b) the 

ROC curve of the classification. The red cross marks our 

decision point which gives a detection rate of 90%, and 

false alarm rate of 3%. 

6. OBJECT-LEVEL ANALYSIS 

Based on the semantic classification, we can extend the 

current pixel-based monitoring and manual selection of 

region of interest to a systematic monitoring on an 

object-level. In the following, examples on bridge and 

railway monitoring are exemplified.  

6.1. AUTOMATIC RAILWAY MONITORING 

We applied the semantic classification scheme on an 

orthorectified optical image centered at the Berlin 

central station. We particularly classified the railway 

and river class for the following analysis. Figure 13 

shows the classification map where the railway class 

and river class are labelled in green and red, 

respectively. The classification performance is 

consistent with the evaluation shown in Figure 12. 

Some false alarm appeared as small clusters, but they 

can be removed by post-processing. 

 

Figure 13. River (red) and railway (green) classified using 

the BoW method. The classification performance is 

consistent as the evaluation in Figure 12 shows. Some false 

alarm appeared as small clusters. They can be filtered out 

in post-processing. 

Based on the classification, the corresponding points in 

the TomoSAR point cloud can be extracted. Assuming 

the railway is smooth and continuous, a smooth spline 

function was fitted to the x and y (east and north) 

coordinates of the railway points to connect separated 

segments, i.e.: 

   2 2

2 2
ˆ arg min 1     

s
s y s s   (4) 

where y is the y coordinates of the railway points, s is 

the spline function (quadratic or cubic) w.r.t. the x 

coordinates of the railway points, and  0,1   is the 

smoothing parameter. The smooth spline is centered in 

the railway, and the width of the railway is adaptively 

estimated at each position. Therefore, we are able to 

interpolate the discontinuity of the railway due to the 

presence of the Berlin central station. Figure 14(a) shows 

the connected railway points overlaid on a calibrated 

aerial image of 20cm ground resolution. The color 

shows the amplitude of seasonal motion due to the 

thermal expansion of the steel. The motion parameters 

have been filtered by minimizing the total variation.  

The seasonal motion shows a regular pattern along the 

railway, which is because of the expansion and 

contraction of individual railway section. By detecting 

the peaks in the derivative, the joints of railways can be 

detected, which are shown as the green dots in Figure 

14(b). In subfigure (c), we provide the close up view of 

the two joints in the optical image where the railway 

joint shown up as dark lines are both visible. 

6.2. AUTOMATIC BRIDGE MONITORING 

By analysing the discontinuity of the river segmentation 

and assuming the discontinuities are caused by bridges, 

the bridges’ positions can be detected automatically. 

The corresponding bridge points are extracted from the 

TomoSAR point cloud, and projected to the optical 

image.  

The projected bridge points are shown in Figure 15 

where the color also represents the amplitude of 

seasonal deformation. The upper most bridge belongs to 

a segment of the railway which is known to have 

thermal expansion. The middle bridge undergoes a 5mm 

seasonal motion at its west end and 2mm at the east end. 

This suggests a more rigid connection of the bridge with 

the foundation at its east end. The two lower bridges are 

stable according to the motion estimates. 
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(c) 

Figure 14. (a) Connected railway points extracted from the 

TomoSAR point cloud. The color shows the amplitude of 

seasonal motion due to the thermal expansion of the steel, 

(b) the amplitude of seasonal motion filtered by 

minimizing the total variation, (c) the detected railway 

joints marked in green, and (d)  
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Figure 15. Overlay of the amplitude of seasonal motion of 

brides extracted from the TomoSAR point cloud on the 

optical image. The bridges are automatically detected from 

the classification map shown in Figure 13 using 

discontinuity analysis.  

7. CONCLUSION 

This paper is the first semantic analysis of high 

resolution InSAR point cloud in urban area. Through 

co-registering optical image and InSAR point cloud to a 

common reference 3-D model, we are able to relate the 

semantic meaning extracted from the optical image to 

the InSAR point cloud. The complementary information 

provided by the two data types enables an object-level 

InSAR deformation and 3-D analysis. 

In the future, we aim at a more intelligent system by 

including more semantic classes, such as high-rise 

buildings, residential area, or even specific landmarks, 

and so on. To reduce the human interaction, we are also 

aiming at a completely unsupervised semantic 

classification. 

8. ACKNOWLEDGEMENT 

This work was supported by the Helmholtz Association 

under the framework of the Young Investigators Group 

“SiPEO” (VH-NG-1018, www.sipeo.bgu.tum.de), 

International Graduate School of Science and 

Engineering, Technische Universität München (Project 

6.08: “4D City”), and the German Research Foundation 

(DFG, Förderkennzeichen BA2033/3-1).  

9. REFERENCES 

[1] R. Bamler and P. Hartl, “Synthetic aperture radar 

interferometry,” Inverse Probl., vol. 14, no. 4, p. 

R1, 1998. 

[2] F. Lombardini, “Differential tomography: a new 

framework for SAR interferometry,” IEEE Trans. 

Geosci. Remote Sens., vol. 43, no. 1, pp. 37–44, 

Jan. 2005. 

[3] G. Fornaro, et al., “Four-Dimensional SAR 

Imaging for Height Estimation and Monitoring of 

Single and Double Scatterers,” IEEE Trans. 

Geosci. Remote Sens., vol. 47, no. 1, pp. 224–237, 

Jan. 2009. 

[4] X. X. Zhu and R. Bamler, “Very High Resolution 

Spaceborne SAR Tomography in Urban 

Environment,” IEEE Trans. Geosci. Remote 

Sens., vol. 48, no. 12, pp. 4296–4308, 2010. 

[5] X. Zhu, Very High Resolution Tomographic SAR 

Inversion for Urban Infrastructure Monitoring: A 

Sparse and Nonlinear Tour, vol. 666. Deutsche 

Geodätische Kommission, 2011. 

[6] X. Zhu, et al., “Tomo-GENESIS: DLR’s 

Tomographic SAR Processing System,” in Urban 

Remote Sensing Event (JURSE), 2013 Joint, 

2013, pp. 159–162. 

[7] Y. Wang and X. X. Zhu, “Automatic Feature-

based Geometric Fusion of Multi-view TomoSAR 

Point Clouds in Urban Area,” IEEE J. Sel. Top. 

Appl. Earth Obs. Remote Sens., vol. PP, no. 99, 

2014. 

[8] “Data provided by ‘Land Berlin’ and ‘Business 

Location Service’, supported by ‘Europäischer 

Fonds für Regionale Entwicklung’.” . 

[9] I. Sobel, “An Isotropic 3x3 Image Gradient 

Operator,” Present. Stanf. AI Proj. 1968, 2014. 

[10] G. Csurka, et al., “Visual categorization with bags 

of keypoints,” in Workshop on statistical learning 

in computer vision, ECCV, 2004, vol. 1, pp. 1–2. 

[11] S. Cui, “Spatial and temporal SAR image 

information mining,” Universität Siegen, Siegen, 

Germany, 2014. 

[12] C. Cortes and V. Vapnik, “Support-vector 



 

networks,” Mach. Learn., vol. 20, no. 3, pp. 273–

297, Sep. 1995. 

[13] B. F. Andrea Vedaldi, “VLFeat: an open and 

portable library of computer vision algorithms.,” 

in Proceedings of the 18th International 

Conference on Multimedea 2010, Firenze, Italy, 

2010, pp. 1469–1472. 

 

 

 




